Experimental Modeling of Osteoporosis in Animals

Main Article Content

N.V. Dedukh
N.N. Yakovenchuk
O.A. Nikolchenko

Abstract

Experimental studies on animals under conditions of osteopenia and osteoporosis modeling significantly expand the view of the mechanisms of primary and secondary osteoporosis development, help determining the effect of various factors affecting the bone tissue, evaluate the effect of medications, new biomaterials, etc. Osteoporosis is a multifactorial disease; its clinical manifestations depend on a complex interplay of environmental, lifestyle and genetic factors. The review of the literature analyzes the data on the use of animals to assess the features of osteoporosis course when modeling this pathology by surgical and non-surgical methods. The article features the models of osteoporosis which are reproduced on rats and mice being the most accessible objects and the most frequently used by experimenters. The details of modeling the course of such types of osteoporosis as postmenopausal, senile, glucocorticoid-induced, testosterone deficiency (orchiectomy)-induced, immobilization, hypothermia, radiation-induced, etc. are explored. A specific aspect of recent advances in modeling osteoporosis is the creation of transgenic and knockout mice, whose models may be used to detect components of genetic lesions and will certainly contribute to the development of new methods of prevention and therapy of this severe pathology. The similarity and difference of experimental models of osteoporosis describing the pathophysiological changes in humans due to osteoporosis are noted. Emphasis is placed on bioethical norms of working with experimental animals.

Article Details

How to Cite
Dedukh, N., N. Yakovenchuk, and O. Nikolchenko. “Experimental Modeling of Osteoporosis in Animals”. PAIN, JOINTS, SPINE, vol. 11, no. 3, Nov. 2021, pp. 97-109, doi:10.22141/2224-1507.11.3.2021.243046.
Section
Review

References

Povorozniuk VV, Dedukh NV, Grigor'eva NV, Hopkalova IV. Eksperimental'nyi osteoporoz [Experimental osteoporosis]. Kyiv; 2012. 228 p. (in Russian).

Barré-Sinoussi F, Montagutelli X. Animal models are essential to biological research: issues and perspectives. Future Sci OA. 2015 Nov 1;1(4):FSO63. https://doi.org/10.4155/fso.15.63.

Ferreira GS, Veening-Griffioen DH, Boon WPC, et al. A standardised framework to identify optimal animal models for efficacy assessment in drug development. PLoS One. 2019 Jun 13;14(6):e0218014. https://doi.org/10.1371/journal.pone.0218014.

Dedukh NV, Malyshkina SV, Bengus LM. Experimental modeling in animals as a step in understanding the pathogenesis of osteoporosis. In: Korzh NA, Povorozniuk VV, Dedukh NV, Zupanets IA, editors. Osteoporoz: epidemiologiia, klinika, diagnostika i lechenie [Osteoporosis: epidemiology, clinical presentation, diagnosis and treatment]. Kharkiv: Zolotye stranitsy; 2002. 236-240 pp. (in Russian).

Frol'kis VV, Povorozniuk VV, Evtushenko OA. Experimental osteoporosis (models, mechanisms of development of age-related osteoporosis). In: Korzh NA, Povorozniuk VV, Dedukh NV, Zupanets IA, editors. Osteoporoz: epidemiologiia, klinika, diagnostika i lechenie [Osteoporosis: epidemiology, clinical presentation, diagnosis and treatment]. Kharkiv: Zolotye stranitsy; 2002. 512-526 pp. (in Russian).

Brent MB, Brüel A, Thomsen JS. Animal models of disuse-induced bone loss: study protocol for a systematic review. Syst Rev. 2020 Aug 16;9(1):185. https://doi.org/10.1186/s13643-020-01441-3.

Frol'kis VV, Povorozniuk VV, Evtushenko OA. Experimental osteoporosis. Zdorov’ja Ukrai'ny. 2004;(86):22-25. (in Russian).

Iwaniec UT, Turner RT. Chapter 39 - Animal Models for Osteoporosis. In: Marcus R, Dempster DW, Cauley JA, Feldman D, Luckey M, editors. Osteoporosis. 4th ed. Cambrige, MA: Academic Press; 2013. 939-961 pp. https://doi.org/10.1016/B978-0-12-415853-5.00039-X.

Komrakova M, Stuermer EK, Tezval M, et al. Evaluation of twelve vibration regimes applied to improve spine properties in ovariectomized rats. Bone Reports. 2017;7:172-180. https://doi.org/10.1016/j.bonr.2014.12.001.

Dedukh NV, Nikol’chenko OA. Bone regeneration in alimentary osteoporosis (experimental study). OTP. 2009;(2):34-40. (in Ukrainian).

Turner AS. Animal models of osteoporosis--necessity and limitations. Eur Cell Mater. 2001 Jun 22;1:66-81. https://doi.org/10.22203/ecm.v001a08.

Sophocleous A, Idris AI. Rodent models of osteoporosis. Bonekey Rep. 2014 Dec 10;3:614. https://doi.org/10.1038/bonekey.2014.109.

Ström JO, Theodorsson A, Ingberg E, Isaksson IM, Theodorsson E. Ovariectomy and 17β-estradiol replacement in rats and mice: a visual demonstration. J Vis Exp. 2012 Jun 7;(64):e4013. https://doi.org/10.3791/4013.

Bonucci E, Ballanti P. Osteoporosis-bone remodeling and animal models. Toxicol Pathol. 2014 Aug;42(6):957-969. https://doi.org/10.1177/0192623313512428.

Yakovenchuk NN, Dedukh NV. Morphology of joint cartilage and subhondral bone plate after modeling osteoporosis. Bulletin of problems in biology and medicine. 2017;(141):324-327. https://doi.org/10.29254/2077-4214-2017-4-3-141-324-327. (in Ukrainian).

Komori T. Animal models for osteoporosis. Eur J Pharmacol. 2015 Jul 15;759:287-294. https://doi.org/10.1016/j.ejphar.2015.03.028.

Song L, Bi YN, Zhang PY, et al. Optimization of the Time Window of Interest in Ovariectomized Imprinting Control Region Mice for Antiosteoporosis Research. Biomed Res Int. 2017;2017:8417814. https://doi.org/10.1155/2017/8417814.

Rosales Rocabado JM, Kaku M, Nozaki K, et al. A multi-factorial analysis of bone morphology and fracture strength of rat femur in response to ovariectomy. J Orthop Surg Res. 2018 Dec 13;13(1):318. https://doi.org/10.1186/s13018-018-1018-4.

Ruosi C, Querques F, Granata F, et al. Cellular and animal models for the identification of osteoporosis determinants increasing vertebral compression fractures risk. J Osteopor Phys Act. 2015;(3):159. http://doi.org/10.4172/2329-9509.1000159.

Eastell R, Szulc P. Use of bone turnover markers in postmenopausal osteoporosis. Lancet Diabetes Endocrinol. 2017 Nov;5(11):908-923. https://doi.org/10.1016/S2213-8587(17)30184-5.

Kaveh K, Ibrahim R, AbuBakar MZ, Ibrahim TA. Osteoporosis induction in animal model. American Journal of Animal and Veterinary Sciences. 2010;5(2):139-145. https://doi.org/10.3844/ajavsp.2010.139.145.

Govindarajan P, Khassawna T, Kampschulte M, et al. Implications of combined ovariectomy and glucocorticoid (dexamethasone) treatment on mineral, microarchitectural, biomechanical and matrix properties of rat bone. Int J Exp Pathol. 2013 Dec;94(6):387-398. https://doi.org/10.1111/iep.12038.

Tou JC, Foley A, Yuan YV, Arnaud S, Wade CE, Brown M. The effect of ovariectomy combined with hindlimb unloading and reloading on the long bones of mature Sprague-Dawley rats. Menopause. 2008 May-Jun;15(3):494-502. https://doi.org/10.1097/gme.0b013e318148bbad.

Islam N, Chanda S, Ghosh TK, Mitra C. Cold stress facilitates calcium mobilization from bone in an ovariectomized rat model of osteoporosis. Jpn J Physiol. 1998 Feb;48(1):49-55. https://doi.org/10.2170/jjphysiol.48.49.

Van Kempen TA, Milner TA, Waters EM. Accelerated ovarian failure: a novel, chemically induced animal model of menopause. Brain Res. 2011 Mar 16;1379:176-187. https://doi.org/10.1016/j.brainres.2010.12.064.

Wright LE, Christian PJ, Rivera Z, et al. Comparison of skeletal effects of ovariectomy versus chemically induced ovarian failure in mice. J Bone Miner Res. 2008 Aug;23(8):1296-1303. https://doi.org/10.1359/jbmr.080309.

Liu W, Wang LY, Xing XX, Fan GW. Conditions and possible mechanisms of VCD-induced ovarian failure. Altern Lab Anim. 2015 Dec;43(6):385-392. https://doi.org/10.1177/026119291504300606.

Povorozniuk VV, Hopkalova IV. Features of bone mineral density in modeling different types of secondary osteoporosis in males of reproductive age. Problems of Endocrine Pathology. 2010;(3):75-82. (in Russian).

Hopkalova IV, Dedukh NV, Ashukina NO, Bengus LM. Morphology of vertebra body bone tissue of male ratsafter orchidectomy and L-thyroxine injection. Problems of Endocrine Pathology. 2009;(4):94-102. (in Russian).

Hopkalova IV, Povorozniuk VV, Karachentsev YuI, Kreslov YeO. Sposib modeljuvannja vtorynnogo osteoporozu u samciv-shhuriv reproduktyvnogo viku [Method for modeling secondary osteoporosis in male rats of reproductive age]. Patent UA № 23141, 2007. (in Ukrainian).

McGee-Lawrence ME, Syed FA. Chapter – 17. Animal Models of Bone Disease-B. In: Conn PM, editor. Animal Models for the Study of Human Disease. Cambrige, MA: Academic Press; 2013. 391-417 pp. https://doi.org/10.1016/B978-0-12-415894-8.00017-8.

Glatt V, Canalis E, Stadmeyer L, Bouxsein ML. Age-related changes in trabecular architecture differ in female and male C57BL/6J mice. J Bone Miner Res. 2007 Aug;22(8):1197-1207. https://doi.org/10.1359/jbmr.070507.

Matsushita M, Tsuboyama T, Kasai R, et al. Age-related changes in bone mass in the senescence-accelerated mouse (SAM). SAM-R/3 and SAM-P/6 as new murine models for senile osteoporosis. Am J Pathol. 1986 Nov;125(2):276-283.

Chen H, Kubo KY. Segmental variations in trabecular bone density and microstructure of the spine in senescence-accelerated mouse (SAMP6): a murine model for senile osteoporosis. Exp Gerontol. 2012 Apr;47(4):317-322. https://doi.org/10.1016/j.exger.2012.01.005.

Zhang N, Chow SKH, Leung KS, Lee HH, Cheung WH. An animal model of co-existing sarcopenia and osteoporotic fracture in senescence accelerated mouse prone 8 (SAMP8). Exp Gerontol. 2017 Oct 15;97:1-8. https://doi.org/10.1016/j.exger.2017.07.008.

Histing T, Stenger D, Kuntz S, et al. Increased osteoblast and osteoclast activity in female senescence-accelerated, osteoporotic SAMP6 mice during fracture healing. J Surg Res. 2012 Jun 15;175(2):271-277. https://doi.org/10.1016/j.jss.2011.03.052.

Yuan R, Tsaih SW, Petkova SB, et al. Aging in inbred strains of mice: study design and interim report on median lifespans and circulating IGF1 levels. Aging cell. 2009;8(3):277-287. doi: 10.1111/j.1474-9726.2009.00478.x.

Sakai A. Animal models for bone and joint disease. Animal models of immobilization and unloading. Clin Calcium. 2011;21(2):181-188. https://doi.org/CliCa1102181188.

Atmaca H, Aydın A, Musaoğlu R. Experimental model of osteoporosis: comparison between ovariectomy and botulinum toxin a. Acta Ortop Bras. 2013;21(6):340-343. https://doi.org/10.1590/s1413-78522013000600009.

Nіkol'chenko OA. Morfologіchnі osoblivostі reparativnogo osteogenezu v umovakh alіmentarnogo defіtsitu kal'tsіiu (eksperimental'ne doslіdzhennia). Diss. kand. biol. nauk [Morphological features of reparative osteogenesis in conditions of alimentary calcium deficiency (experimental studies). PhD in Biol Sci diss.]. Kyiv; 2009. 20 p. (in Ukrainian).

Weinstein RS, Jilka RL, Parfitt AM, Manolagas SC. Inhibition of osteoblastogenesis and promotion of apoptosis of osteoblasts and osteocytes by glucocorticoids. Potential mechanisms of their deleterious effects on bone. J Clin Invest. 1998 Jul 15;102(2):274-282. https://doi.org/10.1172/jci2799.

Poshelok DM, Dedukh NV, Malyshkina SV. Cooling and hypothermia effect on structural and metabolic characteristics of bone (review). Problems of Cryobiology and Cryomedicine. 2014;24(4):279-291. https://doi.org/10.15407/cryo24.04.279.

Dmitrenko AS, Cagan OV, Pertsovich VM, Zhurakivsky VM. Changes angioarchitectonics gastrocnemius of rats after action of a general deep hypothermia. World of Medicine and Biology. 2010;(26):67-69. (in Ukrainian).

Poshelok DM. Remodeljuvannja kistkovoi' tkanyny pislja gipotermii' (eksperymental'ni doslidzhennja). Diss. kand. biol. nauk [Bone remodeling after hypothermia (experimental studies). PhD in Biol Sci diss.]. Kharkiv; 2015. 16 p. (in Ukrainian).

Poshelok DM, Dedukh NV, Malyshkina SV. Effect of hypothermia on trabecular bone remodeling in rats. Sovremennaia meditsina: aktual'nye voprosy. 2014;33(7):70-85. (in Russian).

Riesenfeld A. Compact bone changes in cold-exposed rats. Am J Phys Anthropol. 1976 Jan;44(1):111-112. https://doi.org/10.1002/ajpa.1330440115.

Markevych OV. Morfofunkcional'ni zminy skeleta v umovah vplyvu nyz'kyh doz ionizujuchogo oprominennja u vikovomu aspekti (anatomo-eksperymental'ne doslidzhennja). Diss. kand. med. nauk [Morphological and functional changes in the skeleton under conditions of exposure to low doses of ionizing radiation in the age aspect (anatomical and experimental study). PhD in Med Sci diss.]. Sumy; 2015. 186 p. (in Ukrainian).

Willey J. Radiation-induced osteoporosis: bone quantity, architecture, and increased resorption following exposure to ionizing radiation. PhD diss. Clemson; 2008. 181 p.

Mohamad NV, Che Zulkepli MAA, May Theseira K, et al. Establishing an Animal Model of Secondary Osteoporosis by Using a Gonadotropin-releasing Hormone Agonist. Int J Med Sci. 2018 Jan 19;15(4):300-308. https://doi.org/10.7150/ijms.22732.

Sakamoto S, Sassa S, Kudo H, Suzuki S, Mitamura T, Shinoda H. Preventive effects of a herbal medicine on bone loss in rats treated with a GnRH agonist. Eur J Endocrinol. 2000 Jul;143(1):139-142. https://doi.org/10.1530/eje.0.1430139.

Utko A, Labunets IF, Butenko GM. Transgenic mice in biomedical research (literature review). Journal of the NAMSU. 2014;20(1):11-24. (in Russian).

Kawaguchi H. Molecular backgrounds of age-related osteoporosis from mouse genetics approaches. Rev Endocr Metab Disord. 2006 Jun;7(1-2):17-22. https://doi.org/10.1007/s11154-006-9011-3.

Hiramatsu K, Asaba Y, Takeshita S, et al. Overexpression of gamma-glutamyltransferase in transgenic mice accelerates bone resorption and causes osteoporosis. Endocrinology. 2007 Jun;148(6):2708-2715. https://doi.org/10.1210/en.2007-0215.

Onodera S, Sasaki S, Ohshima S, et al. Transgenic mice overexpressing macrophage migration inhibitory factor (MIF) exhibit high-turnover osteoporosis. J Bone Miner Res. 2006 Jun;21(6):876-885. https://doi.org/10.1359/jbmr.060310.

Morris JA, Kemp JP, Youlten SE, et al. An atlas of genetic influences on osteoporosis in humans and mice. Nat Genet. 2019 Feb;51(2):258-266. https://doi.org/10.1038/s41588-018-0302-x.

Yamaguchi M. Regucalcin and metabolic disorders: osteoporosis and hyperlipidemia are induced in regucalcin transgenic rats. Mol Cell Biochem. 2010 Aug;341(1-2):119-133. https://doi.org/10.1007/s11010-010-0443-4.

Bohlooly-Y M, Mahlapuu M, Andersén H, et al. Osteoporosis in MCHR1-deficient mice. Biochem Biophys Res Commun. 2004 Jun 11;318(4):964-969. https://doi.org/10.1016/j.bbrc.2004.04.122.

Kemp JP, Morris JA, Medina-Gomez C, et al. Identification of 153 new loci associated with heel bone mineral density and functional involvement of GPC6 in osteoporosis. Nat Genet. 2017 Oct;49(10):1468-1475. https://doi.org/10.1038/ng.3949.

Jilka RL. The relevance of mouse models for investigating age-related bone loss in humans. J Gerontol A Biol Sci Med Sci. 2013 Oct;68(10):1209-1217. https://doi.org/10.1093/gerona/glt046.

Seeman E. Pathogenesis of bone fragility in women and men. Lancet. 2002;359(9320):1841-1850. https://doi.org/10.1016/S0140-6736(02)08706-8.

Atmaca H, Aydın A, Musaoğlu R. Experimental model of osteoporosis: comparison between ovariectomy and botulinum toxin a. Acta Ortop Bras. 2013;21(6):340-343. https://doi.org/10.1590/s1413-78522013000600009.

Council of Europe. European Convention for the Protection of Vertebrate Animals Used for Research and Other Scientific Purposes. European Treaty Series - No. 123. Strasbourg, 18 March 1986. Available from: https://rm.coe.int/168007a67b. Accessed: March 18, 1986.

Verkhovna Rada of Ukraine. Law of Ukraine on February 21, 2006 № 3447-IV. On protection of Animals from Cruel Treatment. Available from: https://zakon.rada.gov.ua/laws/show/3447-15#Text. Accessed: August 04, 2017. (in Ukrainian).

Ministry of Education and Science of Ukraine. Order on March 01, 2012 № 249. On Adoption of the Procedure for Conducting Experiments on Animals by Scientific Institutions. Available from: https://zakon.rada.gov.ua/laws/show/z0416-12#Text. Accessed: March 01, 2012. (in Ukrainian).

Most read articles by the same author(s)

1 2 > >>