Features of bone metabolism in patients with osteoarthritis, type 2 diabetes mellitus and their combination


  • L.V. Zhuravlyova Kharkiv National Medical University, Kharkiv, Ukraine
  • M.O. Oliinyk Kharkiv National Medical University, Kharkiv, Ukraine




bone metabolism, metabolic syndrome, osteoarthritis, type 2 diabetes mellitus


Background. Osteoarthritis (OA) is one of the most common joint diseases characterized by periodic exa­cerbations, pain syndrome of varying severity, progressive course, which leads to deformity of the joints, a decrease of their function and deterioration of patients’ life quality. The association of OA with a variety of metabolic disorders, such as type 2 diabetes mellitus (DM) and obesity, is very important. The purpose of the study was to investigate the parameters of bone metabolism in patients with OA, type 2 diabetes mellitus and their combination in patients with different phenotypes, as well as the correlation between parameters of bone metabolism and the level of proinflammatory cytokines. Materials and me­thods. A total of 104 patients with OA alone, type 2 DM alone and a combination of OA with type 2 DM were examined (31 men, mean age 54.02 ± 0.67 years). The survey plan included evaluation of C-reactive protein (СRP), osteocalcin, calcitonin, Ca, P, Mg, tumor necrosis factor a (TNF-a), interleukin-1b (­IL-1b) in the blood. The X-ray exa­mination of the knees was performed in all patients with OA. Results. The significantly higher levels of osteocalcin were determined in the control group and in the group of patients with OA alone as compared to the groups of patients with type 2 DM alone and OA combined with type 2 DM. That is, the following was va­lid for osteocalcin: control = OA > T2DM = = ОА + T2DM = ОА + + T2DM + obesity. The highest number of significant correlations was found in the group with comorbid pathology and obesity. We determined the relationships between osteocalcin and TNF-a (r = –0.78, p < 0.05), IL-1b (r = –0.75, p < 0.05), CRP (r = –0. 46, p < 0.05), between Ca and TNF-a (r = 0.67, p < 0.05), IL-1b (r = 0.59; p < 0.05), between calcitonin and TNF-a (r = 0.56, p < 0.05), IL-1b (r = 0.46, p < 0.05), CRP (r = 0.42, p < 0.05), between Mg and TNF-a (r = –0.47, p < 0.05). The results of the canonical analysis of cytokine activity and parameters of bone metabolism suggest that a significant correlation exists between cytokines and the characteristics of bone metabolism (canonical correlation = 0.52, p < 0.05), the largest contribution to this connection is made by IL-1b among cytokines, and by osteocalcin — among bone metabolism indices. Conclusions. The study demonstrates a definite role of systemic inflammation in the development of bone metabolism disorders that can influence the progression of OA.


Download data is not yet available.


Balabanova RM. Role of interleukin-1 in osteoarthrosis and possibilities of its arrest. Sovremennaya Revmatologiya. 2011;5(1):58-62. (in Russian). doi:10.14412/1996-7012-2011-653.

Balabanova RM. Pain type in osteoarthritis: Approaches to treatment. Sovremennaya Revmatologiya. 2014;8(2):103-106. (in Russian). doi:10.14412/1996-7012-2014-2-103-106.

Alekseeva LI, Zaitseva EM. Perspective directions of osteoarthritis therapy. Nauchno-prakticheskaya revmatologiya. 2014;52(3):247-250. (In Russ.) doi:10.14412/1995-4484-2014-247-250.

Loeser RF, Goldring SR, Scanzello CR, Goldring MB. Osteoarthritis: A Disease of the Joint as an Organ. Arthritis Rheum. 2012 Jun;64(6):1697-707. doi: 10.1002/art.34453.

Kartamysheva NN, Tchumakova OV. Bone remodeling as model of intercellular actions. Nephrology and Dialysis. 2004;(6)1:43-46. (in Russian).

Upton AR, Holding CA, Dharmapatni AA, Haynes DR. The expression of RANKL and OPG in the various grades of osteoarthritic cartilage. Rheumatol Int. 2012 Feb;32(2):535-40. doi: 10.1007/s00296-010-1733-6.

Kwan Tat S, Lajeunesse D, Pelletier JP, Martel-Pelletier J. Targeting subchondral bone for treating osteoarthritis: what is the evidence? Best Pract Res Clin Rheumatol. 2010 Feb;24(1):51-70. doi: 10.1016/j.berh.2009.08.004.

Sanchez C, Deberg MA, Bellahcène A, et al. Phenotypic characterization of osteoblasts from the sclerotic zones of osteoarthritic subchondral bone. Arthritis Rheum. 2008 Feb;58(2):442-55. doi: 10.1002/art.23159.

Chan TF, Couchourel D, Abed E, Delalandre A, Duval N, Lajeunesse D. Elevated Dickkopf-2 levels contribute to the abnormal phenotype of human osteoarthritic osteoblasts. J Bone Miner Res. 2011 Jul;26(7):1399-410. doi: 10.1002/jbmr.358.

Pankiv VI. Insulinorezystentnist yak kliuchovyi patofiziolohichnyi mekhanizm rozvytku metabolichnoho syndromu. Journal Practical Angiology. 2012;(54-55):496. (in Ukrainian).

Pacifici R. Role of T cells in ovariectomy induced bone loss--revisited. J Bone Miner Res. 2012 Feb;27(2):231-9. doi: 10.1002/jbmr.1500.

Yoshimura N, Muraki S, Oka H, Tanaka S, Kawaguchi H, Nakamura K, Akune T. Accumulation of metabolic risk factors such as overweight, hypertension, dyslipidaemia, and impaired glucose tolerance raises the risk of occurrence and progression of knee osteoarthritis: a 3-year follow-up of the ROAD study. Osteoarthritis Cartilage. 2012 Nov;20(11):1217-26. doi: 10.1016/j.joca.2012.06.006.

Lajeunesse D. The role of bone in the treatment of osteoarthritis. Osteoarthritis Cartilage. 2004;12 Suppl A:S34-8.

Hashimoto M, Nakasa T, Hikata T, Asahara H. Molecular network of cartilage homeostasis and osteoarthritis. Med Res Rev. 2008 May;28(3):464-81. doi: 10.1002/med.20113.

Hoff P, Buttgereit F, Burmester GR, et al. Osteoarthritis synovial fluid activates pro-inflammatory cytokines in primary human chondrocytes. Int Orthop. 2013 Jan;37(1):145-51. doi: 10.1007/s00264-012-1724-1.

Wang X, Hunter D, Xu J, Ding C. Metabolic triggered inflammation in osteoarthritis. Osteoarthritis Cartilage. 2015 Jan;23(1):22-30. doi: 10.1016/j.joca.2014.10.002.

Franchimont N, Lambert C, Huynen P, et al. Interleukin-6 receptor shedding is enhanced by interleukin-1beta and tumor necrosis factor alpha and is partially mediated by tumor necrosis factor alpha-converting enzyme in osteoblast-like cells. Arthritis Rheum. 2005 Jan;52(1):84-93. doi: 10.1002/art.20727.

Ripmeester EGJ, Timur UT, Caron MMJ, Welting TJM. Recent Insights into the Contribution of the Changing Hypertrophic Chondrocyte Phenotype in the Development and Progression of Osteoarthritis. Front Bioeng Biotechnol. 2018 Mar 19;6:18. doi: 10.3389/fbioe.2018.00018.

Hiraiwa H, Sakai T, Mitsuyama H, Hamada T, et al. Inflammatory effect of advanced glycation end products on human meniscal cells from osteoarthritic knees. Inflamm Res. 2011 Nov;60(11):1039-48. doi: 10.1007/s00011-011-0365-y.

Bakharev IG. The urgency of the problem of diabetic osteopenia. RMJ. 2006;9:24-25. (in Russian).

Manulenko VV, Shishkin AN, Mazurenko SO. Clinical Features of Osteopathy Development in Patients with Diabetes Mellitus Type 2. Mìžnarodnij endokrinologìčnij žurnal. 2010;(27):28-31. (in Russian).

Felson DT. Developments in the clinical understanding of osteoarthritis. Arthritis Res Ther. 2009;11(1):203. doi: 10.1186/ar2531.

Mastbergen SC, Lafeber FP. Changes in subchondral bone early in the development of osteoarthritis. Arthritis Rheum. 2011 Sep;63(9):2561-3. doi: 10.1002/art.30306.

Hayami T, Pickarski M, Zhuo Y, Wesolowski GA, Rodan GA, Duong LT. Characterization of articular cartilage and subchondral bone changes in the rat anterior cruciate ligament transection and meniscectomized models of osteoarthritis. Bone. 2006 Feb;38(2):234-43. doi: 10.1016/j.bone.2005.08.007.

Kovalenko VN, Bortkevych OP, editors. Osteoartroz: Prakticheskoe rukovodstvo [Osteoarthrosis. Practical guidance]. 3rd ed. Kyiv: MORION; 2010. 608 p. (in Ukrainian).

Sanchez C, Deberg MA, Bellahcène A, et al. Phenotypic characterization of osteoblasts from the sclerotic zones of osteoarthritic subchondral bone. Arthritis Rheum. 2008 Feb;58(2):442-55. doi: 10.1002/art.23159.

Ren K, Torres R. Role of interleukin-1beta during pain and inflammation. Brain Res Rev. 2009 Apr;60(1):57-64. doi: 10.1016/j.brainresrev.2008.12.020.

Aigner T, Söder S, Gebhard PM, McAlinden A, Haag J. Mechanisms of disease: role of chondrocytes in the pathogenesis of osteoarthritis--structure, chaos and senescence. Nat Clin Pract Rheumatol. 2007 Jul;3(7):391-9. doi: 10.1038/ncprheum0534.

Thijssen E, van Caam A, van der Kraan PM. Obesity and osteoarthritis, more than just wear and tear: pivotal roles for inflamed adipose tissue and dyslipidaemia in obesity-induced osteoarthritis. Rheumatology (Oxford). 2015 Apr;54(4):588-600. doi: 10.1093/rheumatology/keu464.

Yuan XL, Meng HY, Wang YC, et al. Bone-cartilage interface crosstalk in osteoarthritis: potential pathways and future therapeutic strategies. Osteoarthritis Cartilage. 2014 Aug;22(8):1077-89. doi: 10.1016/j.joca.2014.05.023.

Musumeci G, Szychlinska MA, Mobasheri A. Age-related degeneration of articular cartilage in the pathogenesis of osteoarthritis: molecular markers of senescent chondrocytes. Histol Histopathol. 2015 Jan;30(1):1-12. doi: 10.14670/HH-30.1.



How to Cite

Zhuravlyova, L., & Oliinyk, M. (2021). Features of bone metabolism in patients with osteoarthritis, type 2 diabetes mellitus and their combination. PAIN, JOINTS, SPINE, 8(2), 85–92. https://doi.org/10.22141/2224-1507.8.2.2018.137189



Original Researches